In the right application, a concentrated beam of light can do much of what a mechanical cutting tool can do, only better. Under no physical pressure during the machining process, laser-cut metal is precisely defined and clean, and beams can be focused to extremely narrow spot sizes for tiny features and tight corners. Even beyond the lack of chatter-inducing vibration, laser-cutting tends to be faster than mechanical machining as well as noncontact processes like electronic discharge machining (EDM). Altogether, these and other characteristics make the process particularly useful for delicate, high-precision work, particularly surgical tools and implants.
This isn’t to suggest that laser cutting is always the best option for every feature of a typical medical part. That said, mounting one to a precise, flexible, high-production machine tool (say, a bar-fed Swiss-type lathe) can enable producing much of this work rapidly, in high volumes and from a single setup. That’s precisely the idea behind machinery like LaserSwiss line from Tsugami/Rem sales, says Graham Noake, vice president. What the supplier did not expect was the level of interest from manufacturers that have never before purchased a production metal-cutting machine.
Specifically, manufacturers like Northeast Laser & Electropolish, a Monroe, Connecticut-based specialist in laser cutting, welding, marking and engraving as well as electropolishing and passivating. Since installing its first LaserSwiss in 2014, this 35,000-square-foot, 150-employee operation has improved service to existing customers while also opening the door to work that it likely wouldn’t have considered otherwise.
Meanwhile, this hybrid technology continues to develop. The latest LaserSwiss machines are available with a laser welding head as well as a laser cutting head, Mr. Noake says. Meanwhile, other design changes have reportedly made the technology more accessible without compromising capability.
Moving Into Metal Cutting
For Northeast Laser, the most novel aspect of the new machine wasn’t the addition of a laser head. After all, laser cutting tiny parts rife with slots, spirals, grooves, and so forth is among the company’s core competencies. More traditional metalcutting capabilities—those better suited for operations like turning down diameters and creating features like blind holes that don’t penetrate the workpiece surface, among others—presented a significant learning curve. Choosing tools and parameters, developing CAM programs, and setting up the bar feeder, guide bushing and collets were among the many tasks that represented entirely new territory for the shop’s team, says Dave Hornak, product development manager.
Yet, the learning curve wasn’t too steep. “The longer we have it on the floor, the better we get,” says Jeff Root, production manager, adding that training and support from Tsugami/Rem Sales has been critical. The shop has since installed a second machine, with identical capability to the first, and he says there’s been no lack of opportunity to leverage the new capability. “We’ve gotten the opportunity to do projects that we wouldn’t have been able to attempt in the beginning, and we’ve been able to turn around some prototype orders in a couple of days.”
Thanks to the supplier’s applications expertise, getting the first job into production took only a few weeks after the decision was made to move forward, Mr. Hornak says. These small, tubular medical components were fully machined by the time they arrived at the facility for laser welding and passivating operations, and quality issues and production delays alike filtered down from the upstream supplier. Upon seeing the LaserSwiss in action at a medical industry trade show, management saw an opportunity to not only address these issues, but also to provide an important customer with significant additional cost savings by performing all the work in one location.