Since the Wright Brothers’ first flight in 1903, to the SpaceX launch and land in 2015, aerospace has shot high. Lucky for us. Because the original biplanes were basically big kites, made from wood, wire and linen literally stitched together by teams of seamstresses. Yes, before Rosie the Riveter there was Sally the Seamstress, or Ida Holdgreve.
Aircraft are still “stitched” together, but now their metallic and composite skins are riveted and bonded. And increasingly, those modern-day seamstresses are robots.
With their renowned repeatability, and now greater rigidity and accuracy, robots are the lower-cost tools of choice for many aerospace manufacturing operations. Drilling, fastening, sealing, painting, and composite part production all benefit. Coupled with additive manufacturing and soon, a new rivet-free technology that could transform how aircraft is made, robots are helping to shape the aerospace factory of the future.
The next time you board a flight and prepare to step over the threshold, take a glance down the side of the fuselage. You may have an entirely new appreciation for all the craftsmanship and technology that go into aircraft production.
Automating Aircraft Production
With the aircraft backlog high, competition hot, and many clean-sheet aircraft in the works, aerospace manufacturers are hard-pressed to automate. Ergonomic challenges for workers, and productivity and quality demands are fueling the charge. OEMs and their top-tier suppliers are deploying robots to maximize efficiency and hike their rates.
Boeing 777 jetliners are produced on a moving assembly line using advanced automation technologies. (Courtesy of Boeing)
William Boeing started Boeing Airplane Company in 1916. Today, Boeing is a leading manufacturer of commercial jetliners and defense, space, and security systems. With corporate offices in Chicago, Boeing employs more than 165,000 people across the U.S. and in more than 65 countries. As Boeing celebrates its centennial, the world’s largest aerospace company continues to push the envelope with a series of strategic advanced manufacturing initiatives and projects, many of which include automation.
“When looking at implementing automation we are focused on areas that will improve employee safety by removing ergonomic risks,” says Boeing spokesperson Nate Hulings. “We also look at build functions where automation can enhance quality and productivity. Advanced manufacturing processes will enable us to meet increasing future rates by improving productivity and improving flow.”
Boeing was an early adopter of robots for painting aircraft, and has facilities around the globe that deploy drilling and fastening robots on its aircraft assembly lines.
Read more: Aerospace Manufacturing on Board with Robots