Over the last year, GE Aviation has outlined what is one of the company’s most extensive technology development roadmaps in its more than 100-year history. Multiple ground and flight tests planned this decade will seek new, breakthrough technologies for use in next-generation commercial aircraft engines that could enter service beginning in the mid-2030s.
Advanced engine architectures such as open fan, hybrid electric propulsion systems, and new compact engine core designs—just some of the technologies that will be demonstrated on test stands over the coming years—will all be key programs to watch in 2022 and beyond.
In addition to maturing these technologies for flight readiness and new products, GE also supports efforts to increase use and availability of alternative fuels, such as Sustainable Aviation Fuel (SAF) and hydrogen.
Revolutionary technologies and alternative fuels both have critical roles to play in meeting the aviation industry’s long-term climate goal of net-zero carbon emissions by 2050 for commercial flight.
Here, we’ve laid out GE’s top innovations and industry-leading efforts to watch in the march toward net-zero.
Open fan and the CFM RISE program
If you ask GE’s chief engineer Chris Lorence, the time for open fan is now. Why? Since GE first flew an unducted fan in the 1980s, the open fan engine design has been made simpler and lighter with new approaches such as single-stage rotating carbon fiber composite fan blades and stationary outlet guide vanes. He explains more about his views on open fan here.
The open fan design is one of the advanced engine architectures CFM International, a 50-50 joint company between GE and Safran Aircraft Engines, is exploring through the CFM RISE Program. The parent companies came together in June 2021 to launch the RISE Program with a target of more than 20 percent better fuel consumption and lower CO2 emissions compared to today’s most efficient engines. Technologies matured as part of the RISE Program will serve as the foundation for the next-generation CFM engine that could be available by the mid-2030s. Central to the program is state-of-the-art propulsive efficiency.
Even before NASA announced in September 2021 the selection of GE for its Electrified Powertrain Flight Demonstration (EPFD) program, GE had been advancing electrification of aircraft and engine systems for more than a decade. During that time, GE engineers matured individual components of a hybrid electric system, including motors, generators and power converters.
Now, the jet engine maker and aircraft systems company will take what it’s learned in laboratories about making an integrated electric machine and ready it for ground and flight tests planned for the mid-2020s.
Through the total $260 million program with NASA, GE will mature a megawatt class hybrid electric powertrain to demonstrate flight readiness for single-aisle aircraft using a modified Saab 340B testbed and GE’s CT7-9B turboprop engines. GE is partnering with Boeing, which will support the program’s flight tests and has selected BAE Systems to design, test and supply energy management components.
Electrification efforts draw on capability from across GE’s Aviation, Power and Research organizations. GE’s co-founder Thomas Edison created the first electrical grid in 1882 and today, GE’s power equipment generates one-third of the world’s electricity